PERIODIC LINKS AND AUGMENTED GROUPSDaniel

نویسندگان

  • Daniel S. Silver
  • Susan G. Williams
چکیده

Given a nitely presented group G and an epimorphism : G ! Z, constraints on the orders of automorphisms F : G ! G such that F = are obtained via symbolic dynamics. The techniques provide new obstructions to periodicity for knots and links.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Periodic Links and Augmented Groups

Given a finitely presented group G and an epimorphism χ : G→ Z, constraints on the orders of automorphisms F : G→ G such that χ ◦ F = χ are obtained via symbolic dynamics. The techniques provide new obstructions to periodicity for knots and links.

متن کامل

TORSION NUMBERS OF AUGMENTED GROUPS with applications to knots and links

ABSTRACT. Torsion and Betti numbers for knots are special cases of more general invariants br and βr, respectively, associated to a finitely generated group G and epimorphism χ : G → Z. The sequence of Betti numbers is always periodic; under mild hypotheses about (G,χ), the sequence br satisfies a linear homogeneous recurrence relation with constant coefficients. Generally, br exhibits exponent...

متن کامل

An Introduction to Fully Augmented Links

In this article we summarize information on the class of fully augmented links. These links are geometrically explicit, and therefore provide a large class of examples of hyperbolic links for which geometric information can be computed.

متن کامل

Meridians and Generalized Augmented Links

We show that in some sense, “most” knots have meridian of length strictly less than 4. We do so by finding geometric information on the cusp shapes of a class of links called generalized augmented links. Since any knot can be obtained by an explicit Dehn filling on one of these links, the geometric information on these links gives geometric information on new classes of knots and links.

متن کامل

Meridians and Generalized Augmented Links Jessica

We show that in some sense, " most " knots have meridian of length strictly less than 4. We do so by finding geometric information on the cusp shapes of a class of links called generalized augmented links. Since any knot can be obtained by an explicit Dehn filling on one of these links, the geometric information on these links gives geometric information on new classes of knots and links.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009